A Study of the Basicity of Metal–Metal Bonding in $[\mu$ -SCH₃Fe(CO)₂L]₂ Complexes. II. Interaction with Mercuric Chloride

M. S. ARABI, R. MATHIEU and R. POILBLANC Laboratoire de Chimie de Coordination du C.N.R.S., B.P. 4142, 31030 Toulouse Cedex, France Received March 21, 1977

In a recent publication [1] we showed by protonation that the metal-metal bond in $[\mu$ -SCH₃Fe (CO)₂L]₂ acts as the nucleophilic center. These results, deduced from infrared and n.m.r. spectroscopic data, have recently been confirmed by X-ray structure determination [2]. Moreover, this study revealed that the nucleophilicity of the metal-metal bond towards H⁺ is strongly dependent on the basicity of the ligand L. We now report a study of the action of HgCl₂ on $[\mu$ -(SCH₃)Fe(CO)₂L]₂ with L = P(CH₃)₃, P(C₆H₅)₃, P(OCH₃)₃. These three cases were chosen to determine whether the basicity of the ligands plays here as prominent a part as it does in protonation.

Results and Discussion

The addition of solution of $HgCl_2$ in acetone to a solution of $[\mu$ -SCH₃Fe(CO)₂L]₂ [3] causes the immediate precipitation of $[\mu$ -SCH₃Fe(CO)₂L]₂ · HgCl₂ (I) or $[\mu$ -SCH₃Fe(CO)₂L]₂ · 2HgCl₂ (II) depending on the HgCl₂/complex ratio used, except for L = P(OCH₃)₃ where the complexes remain in solution. In this last case they are crystallized in methanol. The reactions are always nearly quantitative.

One of the problems in formulating a structure is whether or not the halide ion of mercuric chloride has been displaced [4, 5]. Conductivity measurements (Table I) showed that these compounds are non conducting in nitrobenzene and support their formulation as simple adducts.

Three infrared active bands were observed in the ν (CO) stretching region for complexes I and II (Table I) from which one can conclude that the C_{2v} point group of the starting molecule [6] is preserved. The increase in frequency as compared to the starting compounds is about 40 cm⁻¹, which is smaller than that found for monomolecular complexes of group VIA [4] or of iron [7], or in the protonation of these dinuclear complexes [1]. The structure hypothesis is corroborated by proton n.m.r. in CH₂Cl₂ in the case of the most soluble adducts (L = P(OCH₃)₃), in which there is one signal for the P(OCH₃)₃ ligand (δ = 3.86 ppm, J = 10 Hz (complex I); δ = 3.91 ppm,

2	L	$\nu \text{CO cm}^{-1}$ a	Analysi	S							Colour	Melting	$\Lambda_{M}^{\rm b}_{-1{\rm cm}^2{\rm mol}^{-1}}$
			Calcd.				Found					°C	
			υ	H	4	Ð	υ	н	4	G			
_	P(CH ₃) ₃ P(C ₆ H ₅) ₃ P(OCH ₃) ₃	2027m, 2009s, 1977s 2023m, 2007s, 1976s 2041m, 2022s, 1995s	19.42 45.26 17.19	3.23 3.23 2.86	8.36 5.56 7.40	9.57 6.37 8.48	20.22 43.86 17.04	3.36 3.27 2.91	8.69 5.57 7.44	9.38 6.29 8.37	Carmine Black Red	137 dec 130 dec 105	1.37 e 2.84
5	P(CH ₃) ₃ P(C ₆ H ₅) ₃ P(OCH ₃) ₃	2036m, 2016s, 1985s 2030m, 2015s, 1982s 2048m, 2032s, 2000s	14.21 36.83 12.98	2.36 2.59 2.16	6.12 4.47 5.59	14.01 10.25 12.80	14.66 36.42 13.32	2.35 2.66 2.05	6.54 4.67 5.77	13.60 9.9 4 12.75	Bright Red Black Orange	145 dec 126 dec 122	0.64 c 1.05
^a Me	asured in CH ₂ Cl ₂ :	solutions. ^b Molar conductivit	ty in nitro	benzene	at 25°C	for a 10 ⁻³ <i>M</i>	concentra	ation. ^c J	oo insolt	uble to be π	ıeasured.		

TABLE I. Infrared ν (C–O) Spectra and Analytical Data for [μ -SCH₃Fe(CO)₂L]₂ \cdot × HgCl₂ Complexes

From these observations we can conclude that in complexes of type I, $HgCl_2$ is fixed "on the metalmetal bond" to give a three-center donor-acceptor bond as was initially suggested for $Co_2CO_8 \cdot AlBr_3$ [8] even though, in this latter case, it has been shown that AlBr₃ interacts with a bridging CO group [9]. The structure of type II products is more difficult to establish. However, two observations seem to indicate that the second molecule of $HgCl_2$ does not interact directly with the iron complex.

First, the increase in CO frequencies from complex I to complex II is very small (less than 10 cm⁻¹). Secondly, the first stage of the addition of triphenyl phosphine to complex II is the regeneration of complex I and then, more slowly, of the starting material. From a recent study of the crystal structure of $C_6H_3(CH_3)_3M_0(CO)_3 \cdot 2HgCl_2$ [10] it seems reasonable to assume that the second HgCl₂ molecule interacts with a chlorine atom of the coordinated HgCl₂.

In conclusion, we have shown that mercuric chloride adds onto the metal-metal bond of the

 $[\mu$ -SCH₃Fe(CO)₂L]₂ complexes and that, in these reactions, the basicity of the ligand plays a less important role than in protonation. The addition of a Lewis base such as triphenylphosphine causes a slow regeneration of the starting material.

References

- 1 K. Fauvel, R. Mathieu and R. Poilblanc, *Inorg. Chem.*, 15, 976 (1976).
- 2 J. M. Savariault, J. J. Bonnet, R. Mathieu and J. Galy, C.R. Acad. Sc. Paris, (1977), to be published.
- 3 J. A. de Beer, R. J. Haines, R. Greatrex and N. N. Greenwood, J. Chem. Soc. A, 3271 (1971).
- 4 K. Edgar, B. F. G. Johnson, J. Lewis and S. B. Wild, J. Chem. Soc. A, 2851 (1968).
- 5 D. F. Shriver, Accounts Chem. Res., 3, 231 (1970).
- 6 G. Le Borgne, D. Grandjean, R. Mathieu and R. Poilblanc, J. Organometal. Chem., in press.
- 7 B. Demerseman, G. Bouquet and M. Bigorgne, J. Organometal. Chem., 35, 341 (1972).
- P. Chini and R. Ercoli, Gazz. Chim. Ital., 88, 1170 (1958).
 J. S. Kristoff and D. F. Shriver, Inorg. Chem., 13, 499
- (1974).
 10 A. M. Ciplys, R. J. Gene and M. R. Snow, J. Chem. Soc. Dalton, 35 (1976).